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Abstract-This paper aims to clarify the influence that initial perturbations have in controlling the buckling 
process. The questions are: how is the Biot-Ramberg dominant wavelength modified by the presence of finite 
initial perturbations? How is the shape of the resultant folds influenced by the initial geometry? In answering 
these questions we also revisit many of the results already embedded in the literature for viscous materials but 
contrast the behaviour of these materials with those of strongly pressure-dependent elastic-plastic materials; this 
paper represents the first time that the buckling behaviour of such materials has been reported. For layers with a 
series of initial small perturbations, the current results confirm that fold wavelength and growth rate are 
controlled by competence contrast (R). Wavelength selection also occurs in a layer involving perfectly-sinusoidal 
small perturbations, resulting in a dominant wavelength different from the input one. For layers with an isolated 
initial perturbation, both R and initial perturbation geometries influence buckling. If the width of the initial 
perturbation is smaller than a critical width related to R, significant growth of the initial perturbation is possible. 
When the width of the initial perturbation is larger than the critical width, the simple growth of the perturbation is 
possible only for early stages. It then splits into two or more secondary perturbations according to R. These 
perturbations can all grow into finite folds in elastic-viscous models, but only some of them can do so in elastic- 
plastic models. Copyright 0 1996 Elsevier Science Ltd 

INTRODUCTION 

Single-layer buckling has attracted the attention of 
theoreticians and experimentalists for nearly half a cen- 
tury. Its understanding is considered to be a key step to 
interpreting the complexity of natural folding and defor- 
mation. 

The most influential outcome from a vast number of 
such studies is the dominant wavelength theory, first 
proposed by Biot (e.g. 1957,1959, 1961) and Ramberg 
(e.g. 1959,1960,1961) for viscous materials, then modi- 
fied by others (e.g. Chapple 1968, 1969, Sherwin & 
Chapple 1968, Hudleston 1973a,b, Fletcher 1974,1977, 
Smith 1975, 1977); a similar wavelength equation was 
derived even earlier by several engineers for elastic 
materials (e.g. Goodier 1946, Bijlaard 1946). The theory 
predicts that a single layer with many random small 
perturbations embedded in a weaker matrix will develop 
into a regular fold train when subjected to layer parallel 
shortening. The dominant wavelength is determined by 
the competence contrast between the layer and the 
matrix, and by layer thickness. This theory is applicable 
only to early folding stages because infinitesimal defor- 
mation is assumed (see Biot 1965). However, Chapple 
(1968) suggested that the theory can be reasonably 
extrapolated to the finite folding stages where limb dip is 
below 15-20”. Treagus (1973,198l) further showed that 
the theory is applicable to the situations where shorten- 
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ing is oblique to the layer, but the stress required 
increases with increasing the obliquity (also see Treagus 
1988, Treagus & Sokoutis 1992). An interesting buck- 
ling feature has also been reported by Hudleston & Lan 
(1994) who showed that fold shapes (hinge sharpness 
and limb straightness) are relatively insensitive to com- 
petence contrast and the shape of initial perturbations 
but are affected by the stress exponent for power-law 
materials. Furthermore, for Newtonian, viscous 
materials, Dieterich (1969, 1970) and Dieterich & 
Carter (1969) analysed stress-strain distributions and 
cleavage development in folds using the finite element 
method, and showed that an initial perturbation with 
wavelength equal to the dominant wavelength is ampli- 
fied into marked folds by layer parallel shortening. 

In contrast to the theory above, the results from 
studying the development of a single, isolated, large- 
amplitude perturbation in a single layer (Cobbold 1975, 
1977, Williams et al. 1978, Abbassi & Mancktelow 1990, 
1992, Mancktelow & Abbassi 1992, Miihlhaus 1993), 
emphasize the importance of initial perturbations. Cob- 
bold’s paraffin. wax experiments (Cobbold 1975) and 
finite element modelling (Cobbold 1977) show that 
buckling in such a system involves an amplification of the 
initial perturbation and progressive fold propagation 
sideways along the layer. This was verified by Miihlhaus’ 
(1993) analytical results for an elastic layer in a viscous 
matrix. The domination of the gradual amplification 
of initial single perturbations was also demonstrated 
numerically by Williams et al. (1978) and experimentally 
by Abbassi & Mancktelow (1990, 1992); however, little 
or weak sideways fold propagation was reported. In 
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particular, Abbassi & Mancktelow (1990) show that the 
symmetry of the initial perturbation can even be in- 
herited by the final folds. In summary, these studies 
suggest that when the amplitude of initial perturbations 
is large or finite (at least for the situation of a single 
perturbation), the geometry of the initial perturbation 
determines the final wavelength and fold shapes. 

The geometrical nature of initial perturbations in a 
layer seems to be an important factor influencing fold 
evolution. For natural bedding and veins, irregular 
finite-amplitude perturbations could often exist before 
deformation. The buckling theory for single layers with 
isolated finite-amplitude perturbations, as developed by 
the authors above (Cobbold 1975, 1977, Williams et al. 
1978, Abbassi & Mancktelow 1990, 1992, Mancktelow 
& Abbassi 1992, Mtihlhaus 1993), may therefore be 
appropriate in explaining some natural folds. However, 
some important questions have not yet been fully con- 
sidered, in particular: (1) what is the effect of com- 
petence contrast, combined with the influence of 
isolated initial large perturbations, in this situation; and 
(2) will an isolated finite-amplitude perturbation always 
simply amplify when the layer is compressed? 

In this study, we focus on these questions using a 
numerical approach based on the computer code FLAC 
(Fast Lagrangian Analysis of Continua, Cundall & 
Board 1988). We start with the buckling of single layers 
with a series of periodic small perturbations, and then 
concentrate on the buckling of single layers with isolated 
single perturbations. Two different theoretical materials 
are considered in this model, namely elastic-viscous and 
elastic-plastic. This study is the first to simulate folding 
in a Mohr-Coulomb elastic-plastic material. Therefore, 
another interest of this study is to explore the difference 
in buckling between this material and viscous materials. 

THEORETICAL BASIS 

FLAC, the solid modelling code employed here is 
based on the finite difference method whereby the 
discretized equations are solved by a dynamic relaxation 
scheme (Cundall & Board 1988, Itasca Consulting 
Group, Inc. 1992). As for the accuracy of the approxi- 
mation, there are no major differences between finite 
difference and finite element methods based on four- 
node quadrilateral meshes. However, FLAC incorpor- 
ates a very efficient strategy for the handling of volu- 
metric constraints. Also the relaxation technique is 
robust in connection with localization modelling. The 
code has been used for studies of graben faults (Cundall 
1990), shear bands (Hobbs & Ord 1989, Hobbs et al. 
1990, Ord 1990), fabric development in folds (Zhang et 
al. 1993), theoretical polycrystals (Zhang et al. 1994a,b) 
and ice (Wilson & Zhang 1994). 

Elastic-viscous (Maxwell) and elastic-plastic (Mohr- 
Coulomb) material models have been adopted for the 
simulations presented here. The simplified constitutive 
equations for both models are described as follows. 

Elastic-viscous (Maxwell) material 

This material is equivalent to a combination of an 
elastic element and a Newtonian viscous element in 
series (see Jaeger & Cook 1979, p. 315, Ranalli 1987, p. 
82, Turcotte & Schubert 1982, p. 337), in which the 
instantaneous elastic response and the viscous defor- 
mation are coupled; the total strain (Eij) is the sum of the 
elastic strain (E;) and viscous strain (ES). The elastic 
strain relates to stress (oij) according to Hooke’s law 

uii = 2Gc; + (K - $G) B&, (1) 

where G, K and 6, are shear and bulk moduli and the 
Kronecker delta, respectively, and the viscous strain 
rate (.$) relates linearly to stress according to the New- 
tonian flow law 

uij = 2+; - 3r7 6&,, (2) 

7 being viscosity. This linear rheology describes the 
behaviour of materials which show instantaneous elas- 
ticity but flow viscously under small stresses and over a 
long period, and it can predict the irrecoverable defor- 
mation of rocks at high temperatures, slow strain rates 
and high confining pressures. Similar linear viscous 
constitutive relations have been extensively used in 
modelling of buckle folds (e.g. Biot 1959, Chapple 1968, 
Dieterich & Carter 1969, Treagus 1973, Williams et al. 
1978). An important aspect of this constitutive behav- 
iour is that the flow stress is only weakly pressure 
dependent through an activation volume term (see Nico- 
las & Poirier 1976). 

Elastic-plastic material 

Experimental studies of rock deformation show that 
under certain temperature, strain-rate and pressure con- 
ditions rocks can undergo large irrecoverable defor- 
mation without loss of continuity after a yield stress is 
reached (Griggs et al. 1960, Edmond & Paterson 1972, 
Jaeger & Cook 1979, p. 87, Ranalli 1987, p. 88). This 
deformation behaviour can be appropriately described 
by an elastic-plastic constitutive relation (Ord 1991, also 
see Vermeer & de Borst 1984, Jaeger & Cook 1979, p. 
228, Turcotte & Schubert 1982, p. 294). The materials 
prescribed by this rheology behave initially elastically 
until the maximum shear stress reaches a critical value 
(yield stress), and then deform plastically to large strain; 
yielding follows the Mohr-Coulomb yield criterion so 
that the flow stresses are strongly pressure-dependent 
(Ord 1991). The total strain of the material is assumed to 
be composed of an elastic part and a plastic part. The 
elastic part is determined by Hooke’s law (equation l), 
while the plastic part is governed by a non-associated 
plastic flow law with constant or evolving cohesion (C), 
friction angle (@) and dilation angle (r#) 

where E$ is the plastic strain rate tensor, g is the plastic 
potential function and 2 is a non-negative scalar multi- 
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plier under yielding (A can be calculated from the con- 
dition of yielding); see Vermeer & de Borst (1984) for a 
full description of the rheology. 

There still exist uncertainties as to which mechanical 
flow law is appropriate for natural rock deformation. 
While power-law constitutive relations are more com- 
monly considered appropriate for lower lithospheric 
levels (e.g. Kirby & Kronenberg 1987, Tsenn & Carter 
1987), based on experimental data at relatively high 
temperatures and pressures, they do not describe the 
failure behaviour of rocks. A power-law fluid (also 
Newtonian and other linear viscous fluids) starts to flow 
at any stress: no critical stress is involved. Additional 
problems with the application of power-law creep theor- 
ies include the wide range of experimentally-derived 
constant values and the extrapolation of data for experi- 
mental conditions and materials to natural rock defor- 
mation. 

MODEL SPECIFICATION 

The numerical assemblies used here are similar to 
those generally adopted in the single-layer buckling 
problem (e.g. Biot 1957, Ramberg 1961, Dieterich 
1970), that is, a central competent layer embedded in a 
less competent matrix (Fig. la). The central layer, with a 
length/thickness ratio of 99: 1 (198 x 2 m), is initially 
seeded with either a series of periodic small pertur- 
bations (Figs. la & b) or a single isolated perturbation 
with a larger amplitude (see Fig. 5). A numerical speci- 
men is approximated by a finite difference mesh (Fig. 
1~). The meshes adopted for our simulations have 198 x 

50 finite difference elements (corresponding to a speci- 
men size of 198 X 134 m). 

To construct the model, the appropriate material 
properties must be assigned to the mesh. In addition to 

density, bulk and shear moduli, which are needed for all 
models, viscosity is also required for the elastic-viscous 
models, and cohesion, friction and dilation angles are 
required for the elastic-plastic models. For single-layer 
buckling, an important parameter is the competence 
contrast (R) between the central layer and the matrix, 
where competence may be described as a measure of 
material strength (for the definitions of competence, see 
Treagus 1988 and Treagus & Sokoutis 1992). This para- 
meter is defined as the Young’s modulus ratio (E,I&) 
for elastic folds (e.g. Goodier 1946) and the viscosity 
ratio for viscous folds (e.g. Sherwin & Chapple 1968, 
Dieterich & Carter 1969, Hudleston 1973a, Treagus 
1973, Smith 1979). However, Treagus & Sokoutis (1992) 
and Treagus (1993) show that viscosity varies in time and 
space for power-law viscous materials, and therefore the 
use of a constant viscosity ratio as competence contrast is 
only valid for linear viscous materials. For the elastic- 
viscous and elastic-plastic materials simulated here, 
viscosity ratio and cohesion ratio must be considered 
respectively in defining the competence contrast be- 
cause they control the viscous part and the plastic part of 
bulk deformation. Since both materials incorporate 
elastic behaviour, bulk and shear moduli should also be 
considered. For a constant Poisson’s ratio, the following 
relationship exists 

El - Kl - G -_ --_. 
~72 Kz G2 

(4) 

In this study, therefore, for simplicity, competence con- 
trast is assumed constant throughout buckling, and is 
defined as 

R = 91- Kl - Gl 

~2 K2 G2 

for the elastic-viscous models and 

(5) 

Fig. 1. (a) Geometry of a numerical model consisting of a central competent layer with a series of periodic small 
perturbations embedded in a less competent matrix. The model is actually plotted from a finite difference mesh formed of 
198 x 50 elements. The small rectangle inside the specimen defines the area amplified in (b) and (c). (b) Amplified image of 
the defined small area in the model. (c) Part of the finite difference mesh, which constitutes the defined small area in the 

model. 
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R+pgl 
2 2 

for the elastic-plastic models, where subscripts 1 and 2 
denote values for the layer and the matrix, respectively. 
The values R = 20,50,100 and 200 are adopted for the 
models presented in the following sections. To achieve 
these parameters, K1, G1, C1 and q1 are chosen as 2.3 X 

10” 1.4 x lOi’, 2.0 x lo9 Pa and 1.0 x 10zo Pas, 
respectively, and the properties for the matrix (q2, K2, 
G2 and C2) are then determined according to equations 
(4) and (5) for the adopted R values. A density of 2450 
kg rnp3 is used for both the layer and the matrix in all the 
simulations, and a friction angle of 30” and a dilation 
angle of 10” are incorporated in the elastic-plastic 
models (for the influence of @ and $J on deformation, see 
Hobbs & Ord 1989, Ord 1990). The material properties 
for the central layer are close to those for sedimentary 
rocks (Clark 1966, Turcotte & Schubert 1982, p. 432). 
The current models assume a coherent, non-slip 
(‘welded’) contact between the layer and the matrix. 

By use of velocity boundary conditions (VBC), all the 
numerical specimens are subjected to a pure shearing 
deformation with shortening parallel to the layer. The 
end deformation reached in the simulations ranges be- 
tween 15 and 20% overall shortening; a simulation will 
stop if the deformation of any element in a mesh is so 
severe that the geometry of the element becomes nu- 
merically invalid. Adoption of stress boundary con- 
ditions could lead to results different to the VBC 
situation (Muhlhaus et al. 1994). 

BUCKLING INVOLVING INITIAL PERIODIC 
SMALL PERTURBATIONS 

In this group of simulations, a series of periodic small 
perturbations was introduced initially along the central 
layer (Fig. la), following the equation y = 0.1 sin (JCX/~). 
These perturbations are equivalent to 16.5 full wave- 
forms, and each has a limb dip of 1.9” (Fig. lb), well 
below the limb-dip limit of about 5” for infinitesimal 
perturbations (Chapple 1968). The initial perturbations 
were introduced only in the central part (about one- 
third) of the layer in the elastic-plastic model with a 
small competence contrast (R = 20). This constraint was 
introduced to ensure that folds develop into the central 
part of the layer. Otherwise, the strain localization of the 
material causes the localized growth of folds in the 
regions near the ends of the layers, to which loading is 
applied. 

Figure 2 shows the geometries of the buckled layers 
after 20% bulk shortening for eight models. A clear 
common feature for the elastic-viscous and elastic- 
plastic models is that the final wavelength increases with 
increasing competence contrast (also see Figs. 3a & d). 
The number of full waveforms (less than 7) for the final 
folds is much less than the number (16.5) for the initial 
perturbations. The fold amplitude (Figs. 2 and 3b & e) 
also increases with increasing competence contrast, 

4 
R=20 20% 

R=50 20% 

R=lrn 20% 

R=2rn 

% 

b) 
R=24l 20% 

Fig. 2. Geometry of buckled single layers developed from the assem- 
bly with a central competent layer containing a series of periodic initial 
perturbations (see Fig. la). (a) Elastic-viscous material models. (b) 
Elastic-plastic material models. The R-values on the left side give 
competence contrast and the numbers on the right side show bulk 

shortening strains. 

similar to fold wavelength. These results are in line with 
the competency contrast-wavelength relationship pre- 
dicted by the dominant-wavelength theory (e.g. Biot 
1961, Ramberg 1961, Sherwin & Chapple 1968). The 
wavelengths achieved here are compared, in Table 1, 
with those calculated from the Biot-Ramberg equation 
(e.g. Biot 1961, equation 4.13) 

(7) 

where Ld is the dominant wavelength, h is the thickness 
of the competent layer, qr and r2 are viscosity coef- 
ficients for the competent layer and the matrix, respect- 
ively. The maximum wavelengths of the elastic-viscous 
models, observed for an entire buckling history, are very 
close to the Biot-Ramberg dominant wavelengths for 
the same competence contrast, R; the final wavelengths 
are generally smaller than the maximum wavelengths 
due to bulk shortening and fold growth. The wave- 
lengths of the elastic-plastic models also compare well 
with the Biot-Ramberg values for R = 20 and 50. For 
higher competence contrast (R = 100 and 200), how- 
ever, the current wavelength values are clearly larger 
than the Biot-Ramberg values. This could reflect the 
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Table 1. Comparison between the wavelength achieved in this study and the dominant wavelength 
calculated from the Biot-Ramberg equation (e.g. Biot 1961, equation 4.13) 

Wavelength of this study (m) 

Competence 
contrast 
(R) 

Biot-Ramberg 
dominant wavelength 

(m) 

Elastic-viscous model 

Maximum Final 

Elastic-plastic model 

Maximum Final 

20 18.8 19.4 18.9 19.0 15.0 
50 25.5 24.9 23.8 25.1 23.8 
100 32.1 30.9 28.1 36.6 33.0 
200 40.4 38.0 36.5 41.6 45.1 

difference between the competence contrast defined for 
the elastic-plastic materials and that for the linear vis- 
cous materials. 

The progressive development of fold wavelength and 
amplitude (Figs. 3a, b, d & e) shows that fold growth in 
both elastic-viscous and elastic-plastic materials is 
roughly exponential at first and then gradually slows 
down. Specifically, fold growth is very small in the early 
stages of deformation; wavelength and amplitude are 
stabilized at the values for the initial perturbations with 
small changes caused by layer-parallel shortening. How- 
ever, after a certain amount of bulk shortening, ‘explo- 
sive’ fold growth which represents the onset of 
wavelength selection takes place. The sharp increases in 
wavelength and amplitude and therefore in fold growth 
rate occur within small strain increments. The timing of 
this ‘explosive’ growth relates to competence contrast 
(see Fig. 3). The larger the competence contrast, the 
smaller the bulk shortening at which the ‘explosive’ 
growth occurs. For example, the ‘explosive’ growth 
occurred after 14.6% overall shortening for the elastic- 
viscous model with R = 20, but it needed only 5.4% 
shortening for the model with R = 200. These results 
numerically confirm the ‘explosive’ manner of fold 
growth and its relevance to competence contrast as 
described by other authors (e.g. Biot 1961, Ramsay 
1967, p. 378). Further development of folding after the 
‘explosive’ stage is characterized by gradual slowing 
down. This growth feature is consistent with Miihlhaus 
et al.‘s (1994) analytical results for the velocity boundary 
constraint. Miihlhaus et al. (1994) also show that, if 
stress boundary conditions are used, fold growth will be 
always exponential; this seems unlikely for natural fold- 
ing. 

There is a difference between the single layer buckling 
predicted here and that by the classic dominant- 
wavelength theory (e.g. Biot 1961). The geometry con- 
sidered in the classic theory for wavelength selection is a 
layer with a series of small initial perturbations of 
various wavelengths, of which only those with the maxi- 
mum growth rate are selected to grow. In contrast, the 
initial perturbations used here form a perfect sinusoid 
with a single wavelength of 12, much smaller than the 
Biot-Ramberg wavelengths (Table 1). According to the 
classic theory, these small perturbations would grow at 
the same rate since the rate is a function of the initial 
wavelength (also see Mancktelow & Abbassi 1992). 
Therefore, all the perturbations would grow into finite 
folds, and their wavelength would simply be the input 

wavelength, unrelated to the competency contrast; 
there would be no dominant wavelength. This is obvi- 
ously not what occurred in the present models. The 
current results show that for such a starting geometry, a 
dominant wavelength still develops during the ‘explo- 
sive’ growth or wavelength selection stage. This domi- 
nant wavelength is different from the input one and is 
determined by the competency contrast. In early defor- 
mation stages, all the initial perturbations do grow at 
similar rates, each trying to achieve a dominant wave- 
length. However, this becomes impossible after a cer- 
tain bulk shortening because the initial wavelength is too 
small to amplify in the layer according to the compe- 
tency contrast. A selection process then occurs. This 
case may represent a special situation of dominant 
wavelength selection. 

Another common feature of elastic-viscous and 
elastic-plastic buckling is that the variation of layer 
length (Figs. 3c & f) exhibits a two-stage pattern. The 
first is the layer-parallel shortening stage characterized 
by a gradual decrease in layer length; this stage has been 
widely described (e.g. Hudleston 1973a, Ramsay & 
Huber 1987, p. 392, Abbassi & Mancktelow 1992, 
Cruikshank & Johnson 1993). The second is the layer- 
parallel lengthening stage, in which the layer length 
increases. However, the lengthening in this stage is 
much smaller than the shortening in the earlier stage, 
and the layer lengths do not recover their original values 
by 20% bulk shortening. The change-over between the 
two stages roughly corresponds to the onset of the 
‘explosive’ fold growth (Fig. 3). This indicates that the 
competence contrast determines the bulk shortening, at 
which the decrease in length switches to an increase. For 
the layer-matrix system with a small R-value, the layer- 
parallel shortening continues to a greater bulk shorten- 
ing and reaches a greater value than the system with 
larger R-values. 

The increase in layer length reported here is different 
from that observed in fold limbs during the late stages of 
folding as a result of flattening (e.g. Chapple 1968). A 
considerable part of the length increase takes place 
roughly along the whole layer while limb dip is still low. 
During the early shortening stages, strain is accommo- 
dated as an elastic component, and an elastic energy is 
accumulated accordingly. Once folding has initiated, 
release of the elastic energy becomes possible and the 
elastic strain component is recovered. This leads to some 
length increase relative to the shortened layer. 

In spite of the essential similarity between the buck- 
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Fig. 3. Presentation of fold wavelength (a & d), amplitude (b & e) and layer length (c & f) vs bulk shortening strain for the 
buckled competent layers of elastic-viscous models (the left column) and elastic-plastic models (the right column). R is 

competence contrast. Starting geometry of the layers involves a series of periodic small perturbations. 

ling results of the elastic-plastic and elastic-viscous 
models, some differences are also observed (Figs. 2 and 
3). For a specific competence contrast, folds derived 
from the elastic-plastic models generally show larger 
amplitude, earlier occurrence of the ‘explosive’ growth 
and therefore smaller pre-buckling shortening than the 
corresponding elastic-viscous models. The wavelengths 
of the elastic-plastic models are also larger than the 
values of the elastic-viscous models for R = 100 and 200 
(Table 1). But for R = 20 and 50, the wavelengths for the 
elastic-viscous and elastic-plastic models are rather 
close; the final wavelength of the elastic-plastic model 
with R = 20 is smaller due to the effect of localised 
buckling. Furthermore, the fold trains developed in the 
elastic-plastic models are less regular and have fewer 
buckles than in the elastic-viscous models. This differ- 

ence is particularly evident in the models with R = 20. In 
this case, the buckling of the elastic-plastic layer is 
concentrated in the central part of the layer (Fig. 2b), 
and the resultant folds show a tighter or more angular 
geometry. This feature is related to the strain localiz- 
ation behaviour of the elastic-plastic material. 

BUCKLING INVOLVING INITIAL SINGLE 
ISOLATED LARGER PERTURBATIONS 

The following group of simulations was designed to 
investigate the amplification of single, isolated pertur- 
bations. The models are similar to that shown in Fig. 
l(a), but the competent layer involves only a single, 
isolated, larger perturbation, rather than a series of 
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Sing. Pen. A 

Sing. Pen B 

Sing. Pert. C 

Fig. 4. Geometry of the central competent layers for three types of 
initial single isolated perturbations termed Sing. Pert. A, B and C, 
respectively. The numerical specimens are similar to that shown in Fig. 

l(a) except for the change in the geometry of the central layer. 

small perturbations. Three types of initial symmetric 
perturbations which bear some similarities to those used 
in Abbassi & Mancktelow’s analogue experiments 
(1992) were considered here, termed perturbation A, B 
and C, respectively (Fig. 4). These three bell-shaped 
perturbations all have an initial amplitude of 1.4 m, but 
their widths are 14,30 and 70 m, respectively; the limb 
dips are lo”, 5.3” and 2.5”, respectively. The simulations 
were performed for both the elastic-viscous and elastic- 
plastic materials, with R = 20 and 100. Another starting 
geometry, with an isolated asymmetric perturbation in 
the central layer (Fig. 7, the 0% stage), was also 
modelled, but only for the elastic-plastic material with 
R = 100. This asymmetric perturbation has an initial 
amplitude of 0.28 m and a width of 22 m; the limb dips 
are 1.1” and 2.2”. 

Perturbations A and B 

All the elastic-viscous and elastic-plastic models in- 
volving perturbations A and B (Fig. 4) demonstrate a 
consistent two-stage buckling feature (Figs. 5a-d and 
6a-d) at 15-20% overall shortening. The early stage of 
folding is characterized by gradual amplification of the 
initial perturbations. During this stage the initial iso- 
lated perturbations grow into finite folds while the rest of 
the layer remains roughly flat. This kind of buckling 
geometry is quite similar to that shown by Williams et al. 
(1978) and Abbassi & Mancktelow (1990, 1992). How- 
ever, this early stage does not persist beyond approxi- 
mately 10% overall shortening for the models with R = 
20, and 6% for the models with R = 100. 

With further deformation, new perturbations formed 
in the rest of the layer away from the initial perturbation, 
through sideways propagation (e.g. see the 14% stage in 
Figs. 5a & c), while the central initial perturbation 
continued to grow; this is basically the result of the 
expansion of the flow field around the original pertur- 
bation along the layer. These new perturbations eventu- 
ally grow into finite-amplitude folds that form fold trains 
together with the buckle grown from the initial pertur- 
bation. However, this fold propagation feature is not 
very clear for the elastic-plastic models with smaller R 
(e.g. 20) (Figs. 6a & c). The buckling development in 
this second stage correlates well with the progressive 
fold-propagation theory proposed by Cobbold (1975, 
1977) and Mtihlhaus (1993). 

The factors controlling fold wavelength are different 

for the folds amplified from the initial isolated pertur- 
bations and for those developed through the process of 
sideways fold propagation. For the first category of 
folds, the width of the initial perturbations indeed influ- 
ences the size of the final folds. The folds formed from 
the narrower initial perturbation A (see Figs. 5a & b and 
6a & b) are also of shorter wavelength than the folds 
formed from the broader initial perturbation B (Figs. 5c 
& d and 6c & d). This can be more clearly illustrated by 
the values of final fold arc length (Table 2). That is, the 
folds grown from the perturbation B have larger arc 
length than those from the perturbation A. This feature 
is in good agreement with the results of previous studies 
(e.g. Cobbold 1975, Abbassi & Mancktelow 1990, 
1992); Williams et al. (1978) also demonstrated that an 
initial single perturbation with a wavelength larger than 
the Biot wavelength leads to the formation of a fold 
broader than the Biot wavelength. However, the current 
results show that the competence contrast also influ- 
ences the fold wavelength in this situation. For the same 
perturbation, a larger competence contrast results in a 
broader final fold with a larger final arc length (e.g. 
compare Figs. 5a & b and 6a & b; also see Table 2). 

In contrast, the wavelength for the folds developed 
through sideways fold propagation is entirely deter- 
mined by competence contrast, which is essentially the 
result of dominant wavelength selection. The simu- 
lations with R = 100 (Figs. 5b & d and 6b & d), as might 
be expected, consistently produced broader propaga- 
tion folds than those formed in the models with R = 20 
(Figs. 5a & c and 6a & c), irrespective of the width of the 
initial single perturbation. Taking the elastic-viscous 
models for example, in which fold propagation is par- 
ticularly effective, the maximum wavelengths are 19.8 
and 20.3 m for the models of R = 20 with perturbations 
A and B, respectively. These are clearly smaller than the 
values for the corresponding models with R = 100, 32.2 
and 32.8 m, respectively. All these values are consistent 
with the Biot-Ramberg dominant wavelength for the 
same competence contrast, R (see Table 1). 

Three major differences in the folding features are 
observed between the elastic-plastic and elastic-viscous 
models. First, the elastic-plastic models (Fig. 6) gener- 
ally produce poorer fold-train geometries than the 
elastic-viscous models (Fig. 5). This is mainly due to 
strain localization associated with elastic-plastic 
materials. For such materials with a yield point, once 
deformation has localized in some areas and plastic yield 
has occurred, further deformation will preferentially 
continue in these areas. This behaviour significantly 
influences the folding process, so that the further buck- 
ling of the central layers is preferentially added to the 
growth of the pre-existing perturbations. Because of this 
fold localization, the formation of new perturbations 
along the layers and their growth are less prominent than 
in the elastic-viscous material. Secondly, the ‘rate’ of 
sideways fold propagation is different. For the elastic- 
plastic models, folds propagate ‘slowly’ over a large bulk 
shortening range, and therefore the process can be more 
clearly observed (e.g. Figs. 6b & d). In contrast, fold 
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Fig. 5. Fold development in the central competent layers for elastic-viscous material models involving three types of initial 
single isolated perturbations (Sing. Pert. A, B and C). R is competence contrast. 

propagation in the elastic-viscous models is much ‘fas- ment of the central layer for the models with pertur- 
ter’. Fully-propagated folds are developed within a bation C (Figs. 5e & f and 6e & f) is different from that 
much smaller bulk shortening increment. Accordingly, for perturbations A and B. 
the propagation is visible in only a certain deformation All four simulations show that the simple amplifi- 
stage (e.g. the 14% stage in Fig. 5~). Finally, for the cation of the initial perturbation can be maintained only 
same initial perturbation and competence contrast, the in the early buckling stages. The limb dips of the ampli- 
fold wavelengths and arc lengths of the elastic-plastic fied perturbation at these stages have reached 8” (Fig. 
models are larger than for the elastic-viscous model (see 5e, the 14% stage), 6” (Fig. 5f, the 4% stage), 5.6” (Fig. 
Figs. 5a-d and 6a-d and Table 2). 6e, the 10% stage) and 7” (Fig. 6f, the 4% stage), 

respectively; these dips are all above the 5” limb dip limit 
Perturbation C for infinitesimal perturbations (Chapple 1968). How- 

ever, with further deformation, the track of the pertur- 
As has been described above, perturbation C is an bation development changes. The simple growth of the 

initial isolated perturbation much broader than pertur- initial perturbation stops and new perturbations form 
bations A and B (see Fig. 4). Its width (70 m) is also within the original perturbation to accommodate addi- 
significantly larger than the Biot-Ramberg wavelengths tional layer-parallel shortening. 
for R = 20 and 100 (see Table 1). The buckling develop- The further development of buckling is different for 
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Fig. 6. Fold development in the central competent layers for elastic-plastic material models involving three types of initial 
single isolated perturbations (Sing. Pert, A, B and C). R is competence contrast. 

Table 2. Final fold arc length for the folds amplified from the initial isolated single 
perturbations 

Fold arc length (m) 

Elastic-viscous model Elastic-plastic model 
Competence contrast 
(R) Pert. A Pert. B Pert. A Pert. B 

20 23.9 35.1 30.4 36.7 
100 31.0 38.9 40.1 44.0 

the elastic-viscous and elastic-plastic models. In the 
elastic-viscous models, the original perturbation splits 
into three new perturbations in the run with R = 20 (Fig. 
5e, the 16% stage) but into two new perturbations in the 
run with R = 100 (Fig. 5f, the 6% stage). The maximum 
wavelengths of these new perturbations are 18.7 and 
29.4 m for R = 20 and 100, respectively, consistent with 
the Biot-Ramberg wavelengths (see Table 1) and also 

the wavelength results for the preceding elastic-viscous 
models. This would suggest that the wavelength of these 
secondary perturbations is totally controlled by the 
competence contrast, rather than by the size of the initial 
isolated perturbation C. As deformation continues, 
these secondary perturbations gradually amplify and 
eventually grow into finite folds. Simultaneously, new 
perturbations form and grow into finite folds in the 
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residual part of the layer outside the initial perturbation 
as a result of sideways fold propagation; this fold propa- 
gation is similar to perturbation A and B situations. The 
final result of the whole buckling process described 
above is a regular fold train (Figs. 5e & f). The trace of 
the initial perturbation C is barely distinguishable. 

In the elastic-plastic models (Figs. 6e & f), the ampli- 
fication development of the new secondary pertur- 
bations is different from that for the elastic-viscous 
models. As a result of strain localization, further buck- 
ling growth is concentrated on the two secondary pertur- 
bations generated near the two maximum dip points 
within the original perturbation, whereas there is little 
additional growth of folds in the middle part of the 
original perturbation. At the same time, the mechanism 
of sideways fold propagation creates two more pertur- 
bations, one to either side of the original perturbation, 
which are also able to grow. This kind of fold growth 
dominates the whole history and the final buckling 
product is an irregular fold train with a wide box fold in 
the central region (see Figs. 6e & f). Again, competence 
contrast significantly influences the wavelength of folds, 
which explains why the box fold formed passively in the 
model with R = 20 is wider than that in the model with R 
= 100; the central part of the layer displays a box-fold 
geometry as a result of secondary buckling at the limbs 
of the original perturbation. 

The buckling behaviour of the layers with pertur- 
bation C are not in agreement with the general idea that 
initial perturbations will significantly grow if they have 
finite amplitudes (Williams et al. 1978, Abbassi & 
Mancktelow 1990, 1992, Muhlhaus 1993). We believe 
that the current result represents one of the important 
styles of growth of initial isolated perturbations. It seems 
that for a specific competence contrast there is a critical 
size limit for the isolated initial perturbations that can 
significantly amplify. If the width of an initial isolated 
perturbation is smaller than this limit (e.g. the pertur- 
bation A and B cases), their simple progressive growth, 
subject to the influence of competence contrast, should 
generally be possible. However, if the width of an initial 
isolated perturbation is too large (e.g. the perturbation 
C case), their simple growth is only possible in the early 
deformation stages. As deformation continues, the 
initiation and growth of new perturbations within the 
original perturbation occurs, with their geometry de- 
pendent on the competence contrast, as demonstrated 
by the current results. A quantitative determination of 
the relationship between this critical perturbation size 
limit and competency contrast requires the performance 
of a large number of numerical simulations, and will be 
the subject of follow-up work. 

An asymmetric perturbation 

This isolated asymmetric initial perturbation is barely 
distinguishable before deformation due to its small limb 
dips (Fig. 7). After 4% overall shortening, however, its 
asymmetric geometry becomes clearly visible. As the 
deformation continues, the asymmetric perturbation is 

Fig. 7. Fold development of a central competent layer with an initial 
single asymmetric perturbation (elastic-plastic model and R = 100). 

gradually amplified into a high-amplitude asymmetric 
fold, manifested in its contrasting limb dips and thick- 
nesses (see Fig. 7, the 18% stage). Fold propagation 
occurs along the layer outside the original perturbation, 
and the resulting folds also display an asymmetric geom- 
etry; note that the asymmetric fold grown from the 
initial perturbation is roughly symmetric to a propagated 
asymmetric fold on its right, and this could cause mis- 
reading of fold symmetry. These results are in good 
agreement with Abbassi & Mancktelow’s experimental 
results (1990) and confirm that the symmetry of the 
initial perturbation does control the symmetry of the 
final folds. 

It should be noted that the initial isolated asymmetric 
perturbation of this model has initial limb dips of 1.1” 
and 2.2”, which falls into the range of the infinitesimal- 
amplitude perturbations (see Chapple 1968). This 
suggests that the symmetry of a single isolated pertur- 
bation can still control the symmetry of the final folds 
even though its amplitude is infinitesimal. Of course, the 
wavelength of the final folds should be mainly controlled 
by the competence contrast. We should mention that the 
fold asymmetry obtained here is weaker as compared to 
Abbassi & Mancktelow’s (1990) experimental folds. 
This is probably because Abbassi & Mancktelow’s initial 
asymmetric perturbations have a finite amplitude and 
therefore have stronger influence on the geometry of 
final folds. 

DISCUSSION 

Single layer buckling is essentially a process of the 
selection, amplification and propagation of initial per- 
turbations, subject to the influence of competence con- 
trast. In such a process, initial perturbations and 
competence contrast are two equally important factors. 
Their coexistence is the basic prerequisite for buckling. 
In fact, an indefinite number of possible combinations of 
both in natural situations is probably the main factor 
behind the complexity of natural folds. 

Buckling following the dominant wavelength selec- 
tion mechanism (e.g. Biot 1959, Ramberg 1961, Chap- 
ple 1968, Sherwin & Chapple 1968) represents only one 
standard situation where an infinite number of infinitesi- 
mal random perturbations is initially present in the 
layer. In this situation, all the initial perturbations are 
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subjected to a selection process and only some of them, 
namely those with maximum growth rate, can grow into 
finite folds; the wavelength is controlled by the com- 
petence contrast and layer thickness. Even if the initial 
infinitesimal perturbations are perfectly sinusoidal, 
additional harmonics could become activated as bulk 
shortening continues, due to the non-linear character of 
the constitutive relations (e.g. in connection with plastic 
yielding). Among these activated harmonics, a wave- 
length selection process takes place, leading to a single 
dominant wavelength and ultimately determining the 
appearance of the folds. 

The dominant wavelength selection breaks down be- 
fore the dip of limbs reaches 10-15” (Chapple 1968). 
This is basically because the dominant wavelength 
equation (see Biot 1959, Ramberg 1961), owing to its 
infinitesimal strain assumption, is not suitable for pre- 
diction of the wavelength change for further defor- 
mation. However, the selection process is effectively 
already completed and the framework of folds is thus 
defined by this stage. The later variation of wavelength 
reflects only the effect of kinematic shortening (see Figs. 
3a & d). The dominant wavelength buckling theory is 
important because it reveals the mechanism of wave- 
length selection and the relationship between wave- 
length and competence contrast. This relationship could 
be used to estimate rheologic parameters for naturally 
folded rocks (Fletcher 1974, Hudleston & Lan 1994). 

The buckling of single layers with a single isolated 
perturbation represents a different situation, which may 
also be well approximated by layers with a limited 
number of well-separated perturbations. Here the 
geometry of the initial perturbation comes to play a 
more important role in the process of buckling, particu- 
larly when the amplitude of the perturbation is finite 
(e.g. Cobbold 1975, Williams et d. 1978, Abbassi & 
Mancktelow 1990,1992). The geometry (e.g. symmetry) 
of the initial perturbation can significantly influence the 
geometry of the final fold that grows from the initial 
perturbation. This conclusion seems to hold true even 
when the initial isolated perturbation is infinitesimal 
(see Fig. 7). This is understandable since the simple 
amplification of the perturbation is the easiest way to 
start buckling. 

Nevertheless, competence contrast still influences the 
buckling in this situation. The significant growth of the 
initial isolated perturbation (e.g. Abbassi & Manckte- 
low 1990, 1992, Mtihlhaus 1993) is generally possible if 
the width of the initial perturbation is equal to or smaller 
than a critical width for the involved competence con- 
trast (the perturbation A and B cases). This is probably 
because the buckling growth of an initial perturbation of 
this size is sustainable for this competence contrast. The 
final fold wavelength in this case is also influenced by the 
competence contrast; the competency contrast influ- 
ences the growth rate of the initial isolated perturbation 
(Abbassi & Mancktelow 1992, Mancktelow & Abbassi 
1992). In particular, the sideways propagation of folds in 
the rest of the layer outside the initial perturbation, and 
their wavelength, are chiefly determined by the com- 
rg ,8:5-H 

a> 

Fig. 8. Examples of natural folds. (a) A folded vein in foliated gneiss, 
Lower Paleozoic, near Korgen, Nordland, Norway (after Weiss 1972, 
plate 171). (b) A folded calcite vein in shale, Cinque Terra, Italy (after 

Abbassi & Mancktelow 1990, fig. 3). 

petence contrast (see Figs. 5a-d and 6a-d). The simple 
growth of the initial perturbation is unlikely when the 
width of the initial perturbation in the layer exceeds the 
critical width for the corresponding competence contrast 
(the perturbation C case). Growth on the scale of such 
an initial perturbation is simply not allowed by the 
buckling ability of the layer, which is determined by the 
competence contrast. The buckling should then follow 
the development of the C type perturbation (see Figs. 5e 
& f and 6e & f). That is, the perturbation shows some 
growth at early stages and then splits into separate, 
smaller perturbations that can further develop into 
folds. A precise specification of the relationship between 
competence contrast and the critical perturbation width 
discussed above is not possible at this stage, owing to the 
limited number of simulations performed. However, a 
full definition of this relationship is possible through 
continued work in this direction. 

Features of the models with perturbation C may be 
important to understanding some natural folds. Figure 8 
gives two examples of natural folds (see Weiss 1972, 
plate 171, Abbassi & Mancktelow 1990, fig. 3). The box- 
like geometries of these natural folds in veins compare 
well with those developed in the current elastic-plastic 
models involving the C-type perturbation (Figs. 6e & f). 
The development of these natural folds may be similar to 
that responsible for fold development in the models; the 
widths of the possible initial perturbations may have 
exceeded the critical values allowed by the buckling 
ability of the veins. In a more general sense, natural 
bedding or a vein could often have a number of finite- 
amplitude initial perturbations of various widths, as 
caused by a particular sedimentary environment or 
irregular spacing of tensile fractures. Buckling of such a 
system should produce an irregular fold train if the 
geometry of the initial perturbation and competence 
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contrast both influence the process in the way predicted 
by this study. This may partly explain why natural folds 
are mostly very irregular. 

Although both the elastic-viscous and elastic-plastic 
models overall predict a consistent buckling develop- 
ment, some important differences do exist, as noted 
above. For the elastic-viscous materials, it seems that a 
roughly regular fold train can always be developed in the 
end, no matter what the initial geometries are involved. 
In contrast, the buckling of the elastic-plastic materials 
is more influenced by the initial geometries and pro- 
duces poorer fold-train geometries. 

It is not yet clear which rheological model (elastic- 
plastic, elastic-viscous, Newtonian viscous and power- 
law viscous) best suits natural folds. This is mainly due to 
the uncertainty about the mechanical flow laws appro- 
priate to complex geological conditions, as mentioned 
above (also see Treagus & Sokoutis 1992, Hudleston & 
Lan 1994). However, we suggest that the buckling 
results of the elastic-plastic models are applicable to 
folding of rocks in the upper crust (see Ord 1991), based 
on the following considerations. (1) The poorer fold 
trains predicted by the elastic-plastic models compare 
better with fold irregularity often observed in the upper 
crust. (2) The fold geometries achieved in the elastic- 
plastic models with isolated initial perturbations agree 
better with some natural folds (Weiss 1972) and experi- 
mental folds (Abbassi & Mancktelow 1990, 1992). (3) 
The yielding behaviour incorporated in the models 
simulates well the failure behaviour of rocks (Griggs et 
al. 1960, Edmond & Paterson 1972, Jaeger & Cook 
1979). (4) The elastic-plastic rheology is suggested as 
being appropriate to model the ductile behaviour of 
rocks at low temperatures (Jaeger & Cook 1979, p. 228, 
Vermeer & de Borst 1984, Ord 1991). 

The elastic-viscous and other (non-linear) viscous 
rheologies may be more appropriate to model rock 
behaviour at high temperatures (a significant fraction of 
the melt temperature; e.g. Turcotte & Schubert 1982, p. 
296) or deeper lithospheric levels (Ord 1991). These 
conditions may be less common in the shallow crust. 

CONCLUSIONS 

For the buckling of single layers with a series of initial 
periodic small perturbations, the current numerical re- 
sults agree well with the dominant wavelength selection 
theory. Fold wavelength is controlled by competency 
contrast when layer thickness is fixed. Fold growth is 
exponential at first and then gradually slows down. The 
variation of layer length exhibits a two-stage pattern, 
that is, layer-parallel shortening followed by certain 
layer-parallel lengthening. The degree of bulk shorten- 
ing for the change-over between both is dependent on 
competence contrast. It is also shown that wavelength 
selection occurs in a layer with a series of perfectly- 
sinusoidal small perturbations. This process leads to a 
dominant wavelength after a certain bulk shortening. 
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bations, competence contrast and initial perturbation 
geometry both influence buckling. When the width of 
the initial perturbations is smaller than a critical width 
for a particular competence contrast, the initial pertur- 
bation can grow significantly, subject to a certain influ- 
ence of the competence contrast. The geometry (e.g. 
symmetry) of the initial perturbation controls the geom- 
etry of the final fold. However, if the width of the 
isolated initial perturbation exceeds the critical value 
allowed by the buckling capacity of the layer, which is 
determined by the competence contrast, then simple 
growth of the initial perturbation is possible only for 
early deformation stages. The perturbation then splits 
into two or more secondary perturbations according to 
the competence contrast. These secondary pertur- 
bations can all grow into finite folds in the elastic-viscous 
models, but only some of them can do so in the elastic- 
plastic models which display strain localisation. Fold 
propagation sideways along the layer outside the initial 
perturbation is so well developed in the elastic-viscous 
models that a regular fold train can always form in the 
end. In contrast, the elastic-plastic materials show 
poorer propagation and therefore develop poorer fold- 
train geometries. The wavelength of propagation- 
formed folds is controlled entirely by competence con- 
trast. 

Acknowledgements-N. S. Mancktelow, P. J. Hudleston, S. H. Trea- 
gus and M. Craig are thanked for their thorough reviews, and critical 
and constructive comments, from which this paper has greatly ben- 
efited. We acknowledge ITASCA for use of the code FLAC. This 
paper is published with the permission of the Director of AGCRC. 

REFERENCES 



Computer simulation of single-layer buckling 655 

modelling large-strain plasticity problem. In: Numerical Methods in 
Geomechanics (edited by Swobada, C.). Proc. 6th Int. Conf. on 
Numerical Methods in Geomechanics. Balkema, Rotterdam, 2101- 
2108. 

Dieterich, J. H. 1969. Origin of cleavage in folded rocks. Am. J. Sci. 
267, 155-165. 

Dieterich, J. H. 1970. Computer experiments on mechanics of finite 
amplitude folds. Can. .I. Earth Sci. 7,467475. 

Dieterich, J. H. & Carter, N. L. 1969. Stress-history of folding. Am. J. 
Sci. 267, 129-154. 

Edmond, J. M. & Paterson, M. S. 1972. Volume changes during the 
deformation of rocks at high pressures. Inc. J. Rock Mech. & Min. 
Sci. 9, 161-182. 

Fletcher, R. C. 1974. Wavelength selection in the folding of a single 
layer with power-law rheology. Am. J. Sci. 274, 10291043. 

Fletcher, R. C. 1977. Folding of a single viscous layer: exact infinitesi- 
mal amplitude solution. Tectonophysics 39,593-606. 

Goodier, J. N. 1946. Cylindrical buckling of sandwich plates. J. appl. 
Mech., Trans. ASME 68,253-260. 

Griggs, D. T., Turner, F. J. & Heard, H. C. 1960. Deformation of 
rocks at 500” and 800°C. In: Rock Deformation. Mem. geol. Sot. 
Am. 79,39-104. 

Hobbs, B. E. & Ord, A. 1989. Numerical simulation of shear band 
formation in a frictional-dilational material. Ingenieur-Archiv 59, 
209-220. 

Hobbs, B. E., Miihlhaus, H.-B., & Ord, A. 1990. Instability, soften- 
ing and localisation of deformation. In: Deformation Mechanisms, 
Rheology and Tectonics (edited by Knipe, R. J. & Rutter, E. H.). 
Spec. Pubis. geol. Sot. Lond. 54, 143-165. 

Hudleston, P. J. 1973a. An analysis of “single-layer” folds developed 
experimentally in viscous media. Tectonophysics 16, 189-214. 

Hudleston, P. J. 1973b. Fold morphology and some geometrical 
implications of theories of fold development. Tectonophysics 16, l- 
46. 

Hudleston, P. J. & Lan, L. 1993. Information from fold shapes. J. 
Struct. Geol. l&253-264. 

Hudleston, P. J. & Lan, L. 1994. Rheological controls on the shapes of 
single-layer folds. J. Struct. Geol. 16, 1007-1021. 

Itasca Consulting Group, Inc. 1992. FLAC: Fast Lagrangian Analysis 
of Continua, User Manual, Version 3.2. Itasca Consulting Group, 
Inc., Minneapolis. 

Jaeger, J. C. & Cook, N. G. W. 1979. Fundamentals of Rock 
Mechanics. Chapman and Hall, London. 

Kirby, S. H. & Kronenberg, A. K. 1987. Rheology of the lithosphere: 
selected topics. Rev. Geophys. 25, 12191244. 

Mancktelow, N. S. & Abbassi, M. R. 1992. Single layer buckle folding 
in non-linear materials--II. Comparison between theory and ex- 
periment. J. Struct. Geol. 14, 105-120. 

Miihlhaus, H. B. 1993. Evolution of elastic folds in plane strain. In: 
Modern Approaches to Plasticity (edited by Kolymbas, D.). 
Elsevier, Amsterdam, 737-765. 

Miihlhaus, H. B., Hobbs, B. E. & Ord, A. 1994. The role of axial 
constraints on the evolution of folds in single layers. In: Computer 
Methods in Geomechanics (edited by Siriwardane, H. J. & Zaman, 
M. M.). Balkema, Rotterdam, 223-231. 

Ord, A. 1990. Mechanical controls on dilatant shear zones. In: 
Deformation Mechanisms, Rheology and Tectonics (edited by Knipe, 
R. J. & Rutter, E. H.). Spec. Publsgeol. Sot. Lond. 54, 183-192. 

Ord, A. 1991. Deformation of rock: A pressure-sensitive, dilatant 
material. In: Localization of Deformation in Rocks and Metals 

(edited by Ord, A., Hobbs, B. E. & Miihlhaus, H.-B.). Pure & 
Appl. Geophys. 137,337-366. 

Nicolas, A. & Poirier, J. P. 1976. Crystalline Plasticity and Solid State 
Flow in Metamorphic Rocks. Wiley, New York. 

Ramberg, H. 1959. Evolution of ptygmatic folding. Norsk geol. 
Tidsskr. 39,99-151. 

Ramberg, H. 1960. Relationship between length of arc and thickness 
of ptygmatically folded veins. Am. J. Sci. 258,3646. 

Ramberg, H. 1961. Contact strain and folding instability of a multi- 
layered body under compression. Geol. Rdsch. 51,405-439. 

Ramsay, J. G. 1967. Folding and Fracturing of Rocks. McGraw-Hill, 
New York. 

Ramsay, J. G. & Huber, M. I. 1987. The Techniques of Modern 
Structural Geology, Volume 2: Folds and Fractures. Academic 
Press, London. 

Ranalli, G. 1987. Rheology of the Earth. Allen & Unwin, London. 
Sherwin, J. A. & Chapple, W. M. 1968. Wavelengths of single layer 

folds: a comparison between theory and observation. Am. J. Sci. 
266167-179. 

Smith, R. B. 1975. Unified theory of the onset of folding, boudinage 
and mullion structure. Bull. geol. Sot. Am. 86, 1601-1609. 

Smith, R. B. 1977. Formation of folds, boudinage and mullions in non- 
Newtonian materials. Bull. geol. Sot. Am. 88, 312-320. 

Smith, R. B. 1979. The folding of a strongly non-Newtonian layer. 
Am. J. Sci. 279,272-287. 

Treagus, S. H. 1973. Buckling stability of a viscous single-layer system 
oblique to the principal compression. Tectonophysics 19, 271-289. 

Treagus, S. H. 1981. A theory of stress and strain variations in viscous 
layers, and its geological implications. Tectonophysics 72,75-103. 

Treagus, S. H. 1988. Strain refraction in layered system. J. Struct. 
Geol. 10,517-527. 

Treagus, S. H. 1993. Flow variation in power-law multilayers: impli- 
cation for competence contrasts in rocks. J. Struct. Geol. 15, 423- 
434. 

Treagus, S. H. & Sokoutis, D. 1992. Laboratory modelling of strain 
variation across rheological boundaries. J. Struct. Geol. 14, 405- 
424. 

Tsenn, M. C. &Carter, N. L. 1987. Upper limits of power law creep of 
rocks. Tectonophysics 136, l-26. 

Turcotte, D. L. & Schubert, G. 1982. Geodynamics: Applications of 
Continuum Physics to Geological Problems. Wiley, New York. 

Vermeer, P. A. & de Borst, R. 1984. Non-associated plasticity for 
soils, concrete and rock. Heron 29, l-64. 

Weiss, L. E. 1972. The Minor Structures of Deformed Rocks. Springer, 
Berlin. 

Williams, J. R., Lewis, R. W. & Zienkiewicz, 0. C. 1978. A finite- 
element analysis of the role of initial perturbations in the folding of a 
single viscous layer. Tectonophysics 45, 187-200. 

Wilson, C. J. L. & Zhang, Y. 1994. Comparison between experiment 
and computer modelling of plane strain simple shear ice defor- 
mation. J. Glacial. 40,46-55. 

Zhang, Y., Hobbs, B. E. & Jessell, M. W. 1993. Crystallographic 
preferred orientation development in a buckled single layer: a 
computer simulation. J. Struct. Geol. 15, 265-276. 

Zhang, Y., Hobbs, B. E. & Jessell, M. W. 1994a. The effect of grain 
boundary sliding on fabric development in polycrystalline aggre- 
gates. J. Struct. Geol. 16, 1315-1325. 

Zhang, Y., Hobbs, B., E. & Ord, A. 1994b. A numerical simulation 
of fabric development in polycrystalline aggregates with one slip 
system. J. Struct. Geol. 16, 1297-1313. 


